
&-
.’. ,

i
A . ~“- ,*__ 4 .. -------~:2- _x,-, .::

I ‘\
?-m::y .. . .-.-—-..,iii!=’ - ‘. ; “A,-.--b

.

● .
..<, .. ,

.

AS-N U!?KEU&jj :=9 $ *,“ ““’””*- ““Km~, .... >.=<,..-:;.::\,.-

- NATIONAL ADVISORY COMMI~EE=%=

-_-—. .

., ~ ~~FOR AERONAUTICS

iECHNICAL NOTE f

No. 960
/“””

.-
. —-—

. ---- .. -----<

I

FORCE A?3D MOMXN!12COE3’J’I(IIEMT$f?OR A “THIN AIRFOIL

WITH PLAP AHD TAB IN A FORM USEFUL FOR

STABILITY ANI) UONTROL f$ALCULAT10N8

By Roland J. White and Dean G. Klampe
Curtis s-Wright Corporation ,.—.-.

●

-J. . ‘.-.

-..
_ ----

. . . ..-v“
Wagh~ngton

January 1945

. . .

,..
-.

CLMSI~IED DOXHlllT

This ioouncnt aonttlna clanmlfled Information affecting -y ba lipmted only to parsom In the military mtd Mval
the Mmtlonal D. C.nsa of tti~ Unlwd St&tenwithinthe mmnlnr S8r?lcem OK tlm Unltad 6tatem,
of tht EapLannI. Ace, UBC 60:31 md 38. Itn transmiaslon m

~pproprlnte civilian Orf;c.r.
md emloyees of theFederml Oovernmant who ha?- ● IOSIL im!t

th mv.latloa of lta conlantm in ● l man-r to m unauthor-
issd Farmek lm pmlrlbit~d by kW.

lDtOreOt therein, md to UnLtad State- cltix.n. or k~cwrj lg~.
InSormUon mo clcssiflad mlty mad dlscmtilon who of nmxsalty ■ ust bt lnfornd there.:.

J&sTRmED

.—. ——
:.. -{ --: ---- :



NATIONAL ADVISORY COMMITTEE I’OR AERONAUTICS
———

TECHNICAL NOTE NO, “960

I’OROE AND MOMENT COEFl?ICIENTS YOR A THIN A.IRE’(21L

WITH FLAP AND TAB IN A FORM USEFUL FOR .

STABILITY AND OONTROL CALCULATIONS

B; Roland Jo White and Dean G. Klampe

8
SUMMARY

Recent airplane design trends have been directed along
the line of control-free-stability analysis involving motions”
of the control surfaces having frequencies less than thoso
considered in flutter calculations, but great enough to re-

C qui.re a knowledge of the air forces resulting from ve.lo.city
. displacements. In addition to this, control arrangements
have been considered having the entire airfoil pivoted or

t having a flap or tab actuated by pressures developed on the
contour of the airfoil, In order to facilitate these calcu-
lations a systematic presentation of the necessary pressure
and force ooefficfents acting on a thin airfoil hav$ng .a flaP

.>.

—

—

..-—
—

and tab has been made and presented in this report in a for.m~_._.” .
suitable for stability calculations.

Equations for the prossur~s have been derived from the
basic equations of reference 1 and their development has been
given in detail. Force coefficients have ”been taken direotly -
from references 1 and 2 or integrated graphically from the” ‘“=.
curves of pressure distribution. In order to presorvo a con-
tinuity of equations, the displacement, velocity, and accel~
eration stability coefficients all have been calculated even

—

though the acceleration or virtual mass effect .gonerally may
be neglected in stability calculations. In all cases only
the real part.of the complex equations of reference 1 is con-
sidered due to the order of frequencies generally involved. ““

RESTRIOZ!ED

-r-
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SYMBOLS

a

6,cfJ’

‘i,Y-.—
v

i3, P

6t

b

c

a

H

23

CT

Cf

c~

h

.V

anglo of afitack..ro.ferrod ~o. rola.tive wind (radians)

angle of rotation of wing referred to horizontal (radians)

an Ie between the relative wind vector and horizontal
7radians)

flap deflection (radians)

tab deflection (radians)

semi-chord of airfoil (ft)

flap hinge -position in fractions of the airfoil semi-
chord (measured from airfoil center)

center of rotation of airfoil in fractions of the airfoil
semi-ohord (measured from airfoil center)

. .-

center of rotation of airfoil in fractions of-the total
ohord (measured from L.E.)

ratio of the flap chord to the total chord

total chord of airfoil’ (ft]

flap chord (ft)

tab chord (ft)

vertical displacement of airfoil (ft)

velocity (fps)
.

M.A.Cl. mean aerodynamic chord (ft)

● x ‘ distance from airfoil chord midpoint to any chordwf.se
station measured in fractions of the semi-chord

4
P pressure difference between upper an-d lower surfaces on ... .. ,=

airfoil

t time (see)

,
‘, -— . - *....
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r

P=

cm

‘1’ltNO. 960

mass air density (sl.ugs/fts )

velocity potential function

circulation

/
F1 _.pva

.
lift coefficient

pitching moment. coefficient

hinge monent coefficient

3

. -.

. .

. .

NOTATION

Before th~ stability coefficients may be derived from
the equations of referenco 1 it is necessary to distinguish ,
between the degrees of freedom employed in reference 1 and

-those generally used in control-fr~o-stability calculations.

Consider an airfoil to havo its center of-motiori position
at point a a.s shown in figuro 1. The angle” @ as shown in
this figure Irill define the angle of the ’chord with respect to
the horizontal and the angle Y will he the angle of the
flight path ‘~ith respect to the horizontal. Then

,.

e = a’ Y=.+ ... .=

;

where a* denotes the value of a as used in reference 1
to distinguish from the value of a employed in stability
calculations,
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.

The angle of attack of the airfoil is then
?’

.
a= 0-y= a’+$

●

where h is the translational velocity defined in reference 1.
In the stability notation ohosen the differential operator
D() will indicate ~()/~T where ‘r’ is the aerod~namic time
having units of half-ch~rd lengths. The value of “
fined by the equation Tb = vt, giving

T is de-

aT/at = v/b

where

v true airspeed (ft/see)

t time (see)

II half chord of airfoil (ft)
*

The degreee of freedom of the airfoil will be a,
6t where 8 is the flap angle and is equivalent

*
in reference 1, and 8t is the tab angle. All ‘angles .Wi.11 .

be expressed in radian meaeure. .

9, 6, and
to P used”-

In forming the stability coefficients each motion is
assumed to take place with the other three degrees of free-
doms maintaining constant values. It is now necessary to rb-
place varl.ous terms of the equations given in reference 1 wi~_h
the newly defined coordinates. The substitutions” are given in
ta%le I and fjre all apparent with-the exception of those for
D(Q) and D (6).

The value of D(e) expresses the airfoil rotating at
uniform angular velocity but maintaining a conetant angle of
attack a. TO accomplish this the flight path-angle must have ~“~_
a constant rate of change producing. a ..curved flight..path; .
“hence4

*
giving

.
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If G is t,o %e constant then
.

d= e=+ + constant

hence

-D(6) = $

.m—

—

In order to obtain equations in terms of D(6), a substitu-

tion for &l and 8 from the equations of reference 1 must ._ ___
be made.

—

In case the airfoil considered is a tail plane the aero-
dynamic time T will be based upon the main wing chord which
may be the wing mean aerodynamic chord. In this case the
valuo of a is to be measured in terms of half-chord-lengths
of tho tail chord and the final valuo of the stability’ or
pressure coefficient converted by multiplying by CT/M.A.C.

for D() and (Cq/M.A. C.)2 for D20 coefficients, where
CT is the tail chord. If 1 is the distance of the aero- r

dypamic center of the tail plane aft .of the airplane center
of gravity in feet, then

-.

21 1a = -—- -CT 2

The stability and pressure coefficients have the subscript
denoting the -type of. coefficient;” for exampl~,

.-
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TABLE S?OR CONVERTING EQUATIONS OF REFERENCE 1 TO FORM

13QUATIONS OF THE STABILITY COEFFICIENTS

o obtain an Replace the

,q,uation in: following terms By
of reference 1*

m l+ a

D(a) %:/va D(a)

D(6} b; 1/7 D(e)

bls/v2 “ -D(6)

D2(6) b2&l /va D2(6)

8 $ 6

D(6) hi/v ‘ D(ij)

D2(6) 112F/v2 Da(B)

*All other terms of equations taken as zero

c-a = 1
2

PRESSURE DISTRIBUTION OVER

The chordwise distribution

-E-H

.

A THIN AIRFOIL WITH FLAP

of pressure difference” over a
thin airfoil with flap will be calculated using the equations

—

i“

v of the non-circulatory and circulatory velocity potentials
given in reference 10 It will be assumed .that the frequency
of oscillation is low enough for terme containing ~, as def-
ined in reference 1, to be taken equal to zero. The par{ ~6_f

6 the preseurecdistribution not containing 2rrF will be defined ‘“
as the “basi& preesure distribution, Itand that part cOnt;~;~ng

27TP will define the additional pressure distribution.
* segregation will Termit airfoil characteristics to be calcu-.

lated for airfoils having a finite aspect ratio.. From yage 6 -
of reference 1, the pressure difference p between the upper
and the lower surface of the airfoil can be written as:



.
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(1)

A positive pressure difference is taken as upward, which
is the reverse of reference 1. From page 5 of refer t3nco lt
the velocity potential of tho non-circulatory flow, using tho
notation of reforonce 1 and substituting ml for a, fs

+Vb[+(m-+ (.”-.c)mcos-’c - “-

●

H()-(x- c)210g N +

wher e

(
N=l-cx - J’Jti)/(x - a)

then

~= vb [~~; jjcd + vb [1 ;~_”

‘v’ [J1-: ..1($ + ~b[*(J*.cos-’ c

(2)

(3) -

log N

x(x - 2c)co#l c ~)a a log N

)1()
b;

2(x -
$i=zF. -

c)logN-(x- —
ax “-”- v

(4“) “
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t

.

,

.

I a~-—
N ax

1 -c a
- C-J’==) 1

. —. — -—(5)

+ ‘=V7F +q+(&z= .Os-l c . ,x - c) log .)]2$
—

+ .“ [~(Ji=v=7 +“(X - 2;) Jm- .0.-1 ---

)]-(x- c)aloglf + (6)

If equations (4) and (6) are substituted in equation .(1),
the pressure distribution for the non-circulatory flow can %e ‘ ‘
found. It is now necessary to determine such a circulatory -
flow that the pressure between upper and lower surfaces at the
trailing edge is zero. If this pressure dlstii”buti-on is added
to the above distribution, then the pressure distribution duo
to the movement of the airfoil having an infinite aepect ratio
can be found. Pressures determined by this method will pro-
duce a lift; hence the angle of attack of the airfoil will be
reduced so that the net lift is zero hy deducting the pressure
distribution due to CLt in proportion to the effective change
in angle of attack. The resulting pres”sui6-’distribution theti ““
will be termed the “basic pressure distribution” and will be
independent of aspect ratio.

The pressure distribution due to the non-circulatory flow
obtained by substituting equations (4) and (6) in equation (1)
is
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Po = p ~a

[

-4x—. 1~l+&a2 r“1.> 2
[2(3 ‘> X2)I+

+p[d==]g’

-(x- c) a log N

ax

(3 + 2CX * 4xa)

J1 -x’

r.t

‘:”w.c-’”g”

)1-(x- C)a al“~ N $
dx

coE1-l c - 4(x - c) log “

- 2C COS-l
-1

c + x COB c) - (x- C)z logN
)1

‘. H

(7)
Va

The pressure distribution due t-o the circulatory flow neg-
lecting the wake effucts can be found by letting x. ~= in

the equation for (21-r/AI’)~q#i3x as given On page 6 OF ~~fer-
.-.

ence 1. Then,when AI’ = I’, equation 11) gives .

()-rpr. ‘ — –

2“ &

(8)

Now for zero pressure at the traillng elge .—

●

po+p~=o for x = 1 (9)
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In order to avoid an indeterminate condition at x = 1,

tiply o
7

and P.,r, by m before substituting fn
tion (9 . Then

where

mo=m+--’c ‘“-”--”- 1
TL1 = (1 - 2C) CO S-l c + (2 - .)- J

J.u

mul-

equa-

(10)
.-. ——

(11)

as defined in reference 1. If equation (10) is substituted
in equation (8), the pressure distribution becomes —.

T 11 b~
+ —. 1 (12)

2n v

The total pressure distribution written in terms of the pres-
sure ratio P for an airfoil of infinite asPe~t rat fo. is .

P = (Po +Pr)/~ Pa

= [.j~]. + [Ed” - ‘+RJ* +[’(;-wqg’

+[4J=ZI~+[4’’’”1$+$E.
(x_c) ~ 10

as
. q p + :[(2-C+’=J

*
●

4(x-c) log N - (x-c) 2a10 ‘1Nb6+ax T
.

) 1-(2C-X) CO S-l c - (X-c)z log N +
(13)

Cos-1 c +r~. log N
1+.X2



To form the basic pressure distribution, the angle of attack
●

m’ will be altered so that .-~ becomes zero. The pressure
distribution due to a change iu a’ only is from equation

.

.

(13)

liow, whenever
camber occurs

(14)

a virtua} or actual,change in the airfoil
due to m’, p, or 13, the angle al of eqtia-,-

tion (10) must be changed so that r is zero. This must be,
done since by definition the basio pressure distribution is.
seleoted for zero lift. For this condition the follewin

Jpressure distribution must be doductud from squatiion (13 to
form the basic pressure distribution,

‘r. ‘-iR[”’ ‘“e-a)%’‘: ‘%’ ‘w!]{’”
then the basic pressure distribution which will occur fer
r= Q is

pB=p- W.

=
[
8J---

‘m i + [’(;-)=] *+ [4 JL7]$’ ‘-

+ +==(=+ (X-2C) CO*-l c) ,, (x-c)2” log .] q. (i,,

For a wi~g having a finite span the slope ot the lift curve n
will be less than 2n. This will cause Pal from equation {14)

to be rgdizced by the factor >. 15 the lift effrjctivenese “’”” -
2’n

due to the change in camber is defined as
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and

12

(17)

(18)

then the total -pressure ratio for a finite wing having a
slope of lift curve m can be written as

p= [mpAl a’ + [“~’ + ‘K& ‘Al + + [PBS’ - apB’l%

where

‘i
iI
i

‘B, =+ [’/% s-‘O’ N - ‘x-c)a1::‘1
p’~ = :

[
-r(3+X-4X=) ~oa-l c + (1.~)x _1-C2

m
1-X2

1“i (20)

I
4(x-c) log IT -

(x-c)~ i3 log N

1“ ,.

‘,, = :[,-(= ‘( X-2C) co=’ c) - (x-:: ‘og “j
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Values of the coefficients defined by equations (17),
(18), and (20) have been calculated and plotted in figurei 3
to 7. .

LITT , PITCHING MOM3NT, AND ?JLAP HINGE MOMENT I?OR A

THIN AIRFOIL WITK A FLAP

From the equations for the pressuro distribution doter-
minod in tho previous section, tho airfoil lift and momont
coefficients can be obtained by integration. These integra-- “-
tions have been performed in reference (1) for the case of
the airfoil with a single flap. H?nce, it wi”ll only %8
necessary to rewrite the equations here using the necessary”

-.

notations to convort tO coefficient form. Let

CL = ‘p —
pbva

cm = Ma

2pbava’

P lift force given. ky equation (XVIII) of reference 1

Mm pitching moment given by equation (XX) of reference 1. ., .r:

M~ hinge moment given by equation (XIX) of reference 1 .-

E ratio of flap chord to total chord

2Tr F = m, slope of airfoil lift curve .-....._.T.,



.

All values of T are a function of a or
the exception of T13 and !l!~.

1? (_~T13= 2 )
~ + (c-a,) TX .

From reference 3 the value of TIT is

c

(23)

only with —

T17 = -2T~ - T1 +
(a - $)T. = -$ “-c’)””- ‘z - Y

. .

.
For the purposes of this report the following coeffi - .

cients defined in terms of the notation of reference 1 will
—

be adopted:
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.

Kal=@a)
.

Kp=/ TLO TT

K; = T11/211

15

CHA = /=-Tlz 4nE I

i
E = Cf/CT I

i
I

I

cmBp = -(T4 + Tlo)/2
I

( T

y

I

cmB~ = -T1.-T~+-&21
I

J~HB&! = ‘T.17/2Ea CHBB = -(T, - T4Tlo)/27rE

CHB;I = T7/2Ea CHBj = T4T11/4TTEa
I

= T1/2Ea
I

CHB~ CHB~ = T3/21TEa I

Values of these coefficients have been calculated and plotted

in figures 2, Z, and 8 to 13. Then

(25)
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SUMMARY 03’ STABILITY AND PRESSURE COEFFICIE~S

E’ollowing is a list of equations for calculating the
pressure and stability derivatives. In some cases equ”~tions

involving at are not written, since the tab effects can be

calculated from the equations for 8 by use of the proper

chord ratios.

—
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I. Pressure Coefficients

Pa=m PA

‘D(a) ‘[p~~](l,.fc.)

1..

17 ..

. .

[
‘D(e) = pB&I - p~fi+ m K&l ‘A] (-) ‘

pD2(e) =
[

P~; l - a pBfi
] (,,.%.)=

‘Da(i3) = [PBS] (i%)’

II. Airfoil Lift Coefficients

.
cLa =m

CLD(m)= F’.;] (*)

[
CLD(6) = CLB~t - CL3~ + mK:&! ] (-)

> ‘ (28)

— .— —
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III. Airfoil Pitching Moment Coefficients

7

Cma=
11

cmD (o-,) .“;:] (M.2C.)

[
cm~(~) = CmB&l - cmB~ +

~“K&l %*] &.:!C.)

L(30) “-”
[

L

[

cmna(~) = cmB$ - (I-E-H) CLB#
] (*)=

Iv . Flap Hinge Moment Coefficients

CHfG =
[1
m CHA

cHfD(m) = [cHBfi] ~A)

0HfD(6) =
[

C=3~ + m K&lCHR;! - “A] (*)

cHfD=(e) =
[
CH3&, -

~z B$] (*Y
@E-H) CL

.

CHf6 = ‘CH~~
L

+ m K.~ CHA
1—.

cHfD(~)i=

[

CHB~ + m K.$
c’.] (*) ‘--

cHfD2-(6) = [c’B~] (*Y

cZIfD(/jt) =

c~fna(~t) ‘“

CHB~t + mK~t CEA

%,t] (*y

] (*)

.-

—

I

i ---/)
—

-.

(31)

-.
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V. Tat Singe Moment Coefficients

CHtm

cHtD(a)

‘Ht6t

%D(6t)

C% Da(tjt)

CHt5

c%D(8)

= m CHA

= CHBp + m IC~ CHA

=

[
%@ + m I@ CHA

] (M.:,.)

‘[ OH@J(M.rc.)a ‘

The basic tab hinge moment derivatives

19

(32)

.

and CHt.# were obtained from a graphical calcul~t.ion of the

first moments a%out the tab hinge axis of the areas under the
curves of PB~, pB~, and PB~. These curves are presented

in figures 14, 15, and 16.

Curves of CH36 ~ which are shown in figure 17 are taken

from reference 2, and the curves of CHB~t and cHB~t,

figures 18 and 19, were constructed from a graphical calcu-
lation of the first moments about the flap hinge axis of the
areas under the curves of pB$ and PB$ for the deflected
tab.

Ourtiss-Wright Corporation
Lambert I?ield, Saint Louis, Me., April 11, 1944.

.— . . —-
● ❆
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Figure l.- Airfoil geometry.
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Figure 3.- Additional forc”e coefficients.
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